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Abstract
We present a new shape-matching deformation model that allows for ef�cient handling of topological changes
and dynamic adaptive selection of levels of detail. Similarto the recently presented Fast Lattice Shape Matching
(FLSM), we compute the position of simulation nodes by convolution of rigid shape matching operators on many
overlapping regions, but we rely instead on octree-based hierarchical sampling and an interval-based region
de�nition. Our approach enjoys the ef�ciency and robustness of shape-matching deformation models, and the same
algorithmic simplicity and linear cost as FLSM, but it eliminates its dense sampling requirements. Our method can
handle adaptive spatial discretizations, allowing the simulation of more degrees of freedom in arbitrary regions of
interest at little additional cost. The method is also versatile, as it can simulate elastic and plastic deformation, it
can handle cuts interactively, and it reuses the underlyingdata structures for ef�cient handling of (self-)collisions.
All this makes it especially useful for interactive applications such as videogames.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation.

1. Introduction

Simulation of deformable objects can greatly enhance the
level of engagement of many computer graphics applica-
tions, and this importance has lead to the development of
many and diverse deformation models over the last twenty
years. In computer animation for feature �lms, physical re-
alism is often the most important aspect. In interactive appli-
cations such as video games or surgery simulation, however,
computational ef�ciency and robustness are the dominant as-
pects, trading physical accuracy for plausibility.

Computer graphics has recently sought the rise of shape-
matching deformation models for robust and ef�cient com-
putation of large deformations, with application to video-
game-like settings. Müller et al. [MHTG05] presented a
meshless simulation technique that pulls deformable points
toward a globally consistent deformed shape, resulting in un-
conditionally stable and extremely fast deformation. Rivers
et. al [RJ07] have extended this technique to simulate many
more degrees of freedom (DOFs) usingFast Lattice Shape
Matching (FSLM). They overlap many (rigid) clusters of
points in a lattice, and exploit the regularity of the lattice
for designing an ef�cient algorithm. The use of a regular lat-
tice induces however unsolved limitations, such as lack of

�exibility for distributing DOFs, poor scalability in terms of
resolution, homogeneous mechanical stiffness, or large cost
for applying topological changes.

Our Contribution

In this paper, we present a novel dynamic deformation tech-
nique based on shape matching that solves many of the lim-
itations of previous methods and extends their applicability
to scenes and models exhibiting interactive complex topo-
logical changes (see Figure3), inhomogeneous mechanical
behavior (Figure4), independently deformed thin features
(Figure1), and adaptive and dynamic LOD selection (Fig-
ure 6). Our simulation algorithm enjoys the same algorith-
mic simplicity as FLSM, and its runtime cost is also linear
in the number of deformation points. However, our adaptive
sampling framework enables in practice the simulation of
much thinner features than FLSM at a much lower cost, as
shown in Figure1.

The technical contributions of our work may be listed as:

� A hierarchical fast summation algorithm for shape-
matching deformations with adaptive discretizations. It
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is sustained onoctree-based samplingandinterval-based
de�nition of shape-matching regions.

� An algorithm for dynamic resampling of the octree repre-
sentation that allows interactive topological changes and
LOD selection.

� A fast method for computing distances on the octree set-
ting, which is used in the dynamic update of shape match-
ing regions.

We continue with a discussion of related work, focus-
ing on earlier shape matching algorithms in Section3. In
Section4 we present our octree shape matching algorithm.
In Section5 we describe fast resampling under topological
changes and dynamic LOD selection, while in Section6 we
introduce an ef�cient shortest path algorithm used for dy-
namic resampling. In Section7 we present experiments and
results, and conclude with a discussion of future work.

2. Related Work

Physically-based simulation of deformable materials was
introduced to computer graphics more than twenty years
ago [TPBF87]. Since then, many researchers have aimed
at obtaining robust deformation models with low compu-
tational cost. Some of their approaches include fast so-
lutions to implicit integration of FEM models [BNC96],
corotational FEM for large deformations with implicit in-
tegration [MDM � 02], boundary element methods focused
on the surface [JP99], or mass-spring models with addi-
tional volume conservation constraints [THMG04]. Modal
analysis methods also enable fast and robust computation
of global deformations on geometrically complex objects
by extracting the main deformation modes [PW89, JP02,
BJ05]. Another way of achieving fast simulations on com-
plex geometry is to compute the deformation on a lat-
tice or low-resolution mesh [CGC� 02a]. Meshless methods
feature other interesting properties such as robust simula-
tion of large deformations, state-transitions, or topological
changes [BLG94, MKN � 04, SOG06]. For a more extensive
discussion of physically-based deformation models, please
refer to surveys on the topic [GM97,NMK � 05].

As an alternative to physically-based methods, shape-
matching deformation models rest on purely geometric
grounds [MHTG05, RJ07]. They move deformation points
toward goal positions de�ned by the rest geometry, thus
guaranteeing stability of the simulation. Effectively, they
offer the robustness of implicit integration in physically-
based methods, with a cost comparable to explicit integra-
tion, making them a great candidate for plausible simula-
tion in interactive applications. Due to the strong connec-
tion between our work and that in [MHTG05,RJ07], we dis-
cuss these approaches in detail in the next section. Shape-
matching deformation models have also seen application in
geometric modeling. The prism-based deformation model of
Botsch et. al [BPGK06] aims at �nding per-prism rigid trans-
formations that minimize a deformation energy. However,
the method solves a global optimization problem, hence it is

Figure 1: An object is deformed with our octree shape
matching approach. Notice the independent deformation of
a �nger in the top-right. FLSM requires35000nodes to cor-
rectly represent thin �ngers (bottom-left), while our adaptive
approach requires only661nodes (bottom-right), providing
88-time speed-up in the simulation.

not quite suited for interactive simulations with many DOFs.
This work was later extended to deal with adaptive sam-
pling [BPWG07]. The position-based dynamics technique
of Müller et al. [MHHR06] is somewhat kindred to shape-
matching models, as it moves points in a deformable model
toward goal positions de�ned by local constraints.

Two of the main applications of our technique are ef�cient
handling of adaptive simulation and topological changes.
There has been extensive work on adaptive simulation in
computer graphics [DDCB01,GKS02,CGC� 02b,OGRG06],
although orthogonal to ours. Regarding topological changes,
our work shares some of the problems of dynamic resam-
pling in meshless deformations [PKA� 05,SOG06].

3. Deformation through Shape Matching

In this section, we review the previous approaches by
[MHTG05] and [RJ07] and discuss limitations.

3.1. Meshless Shape Matching

Given a setRr of simulation points, withx0
i and xi their

initial and deformed positions, the technique by Müller et.
al [MHTG05] computes a rigid rotationRr and a translation
vector that transform thex0

i such that the distance between
initial and deformed con�gurations is minimal in the least-
squares sense. A linear transformation

A = ( å
i2 Rr

mipiq
T
i )Aqq = ArAqq (1)

is computed �rst, withpi = xi � cr andqi = x0
i � c0

r . cr and
c0

r are the centers of mass in the deformed and the initial set-
ting, andAqq is a symmetric matrix containing only scaling.
Rr is extracted fromAr using polar decomposition such that
Ar = RrS. Next, the goal position of each node is computed
asgi = Rr (x0

i � c0
r ) + cr = Trx0

i , Tr = [ Rr tr ] 2 R3x4. Goal
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positions are then used in an unconditionally stable numeri-
cal integration scheme:

vi(t + h) = vi(t) +
gi(t) � xi(t)

h
+ h

fext(t)
mi

; (2)

xi(t + h) = xi(t) + hvi(t + h): (3)

Müller et. al extended the basic de�nition to linear and
quadratic deformation modes. They also increased the num-
ber of DOFs in the deformation by clustering points into sev-
eral regions, but deformation artifacts may appear due to re-
gion discontinuities, and clustering itself is problematic.

3.2. Fast Lattice Shape Matching

Rivers et. al [RJ07] applied the technique of [MHTG05]
on cubic lattices and overlapped many clusters through a
region-based convolution of rigid shape-matching transfor-
mations, resulting in smooth deformation. The object's sur-
face is embedded in the lattice and deformed using trilinear
interpolation of lattice vertices. In the FLSM of Rivers et al.,
each lattice point represents a simulation nodei, and is as-
sociated to a shape matching regionRi composed ofi and
all other nodes closer than a distancew (according to the
max-norm metric). FLSM computes per-region transforma-
tionsTr as described above, and per-node goal positions are
obtained by averaging the transformations of all in�uencing
regions. With a symmetric de�nition of regions, goal posi-
tions are de�ned asgi = < Trx0

i > r2 Ri
= T ix

0
i .

Naively multiplying and summing up vectors for each re-
gion as in (1) would yield a costO(w3n), wheren is the
number of nodes. Instead, FLSM exploits summation redun-
dancy in the lattice setting and yields a total cost linear inthe
number of nodes. We refer to [RJ07] for the exact de�nition
of their fast-summation operator

F i2 Rr
f vig � å

i2 Rr

vi ; (4)

which indicates that a quantityvi is summed over a region
Rr . In essence, it requires three recursive passes along all
simulation nodes, and it is used for computing region trans-
formations and node goal positions. As we will show in sec-
tion 4.3, our algorithm follows the same steps as FLSM, but
replacesF with a new hierarchical fast-summation operator
that works on adaptive discretizations.

3.3. Limitations of the Lattice Setting

FLSM allows for more DOFs and smoother deformation
than the original method by [MHTG05], but the use of a
regular lattice yields several important limitations:

� Small features yield an explosion of the runtime cost. A
small surface feature may require �ne sampling in order
to be deformed independently from non-adjacent mater-
ial, but this �ne sampling must be applied to the whole
object. Figure1 shows how our adaptive sampling cor-
rectly resolves thin features ef�ciently, while in FLSM the
simulation cost grows cubically with lattice resolution.

� Mechanical stiffness, related to region half-widthw, is a
global parameter. A varying widthw would break the reg-
ularity required by FLSM. Figure4 shows material inho-
mogeneity in our octree setting.

� Dynamic restructuring due to topological changes is com-
putationally expensive. The fast-summation algorithm be-
comes particularly intricate in regions where the lattice is
not regular, e.g., near boundaries, as several sums must be
maintained per node. Although [RJ07] show the ability to
perform fracture, the de�nition of these sums is typically
handled as pre-processing, and is expensive at runtime.

4. Octree Shape Matching

In this section, we will introduce our new deformation
method based on octree shape matching.

4.1. Adaptive Octree Sampling

As opposed to the uniform lattice sampling of [RJ07], we
propose an octree-based sampling of the deformable objects.
Octree-based sampling lays a framework for adaptive dis-
cretization of the shape-matching deformation model. More-
over, as it will become clear later, the octree representation
will allow for a hierarchical de�nition of a fast summation
operator, where a high node in the octree stores the sum of
all its leaves. When appropriate, nodes will reuse high-level
sums without visiting subtrees.

We begin by creating a very coarse cubic lattice, referred
asbase lattice, that embeds the object's surface. The choice
of resolution for the base lattice is guided by the maximum
desired stiffness, and has 28 nodes in the example in Fig-
ure1. We then do an octree subdivision of the lattice, follow-
ing some user-de�ned criterion. One possibility is to subdi-
vide until all surface features of a certain size are resolved,
as shown in Figure1, but it is also possible to subdivide at
runtime based on, e.g., user interaction as in Figure6, view-
dependent LOD selection, etc. We place a simulation node at
the center of each leaf cell, and avirtual nodeat the center of
each non-leaf cell. As mentioned earlier, virtual nodes will
store sums of all their descendant simulation nodes. Masses
of simulation nodes are set based on cell volume and density.

4.2. Interval-Based Shape Matching Regions

FLSM exploits lattice regularity for avoiding the region-
size-dependency of brute-force shape matching. Instead, we
propose an interval-based de�nition of regions that, together
with the octree representation, ensures that each summation
operation need only operate onO(1) summands.

Given a simulation nodeni with tentative region width
wi , we de�ne the regionRi of ni in the following way: if a
noden j is closer thanwi from ni , then it belongs toRi ; and
if it is further than(1+ e)wi , then it does not belong. As
a result, nodes in the distance interval[wi ; (1+ e)wi ] may or
may notbe included inRi . This de�nition bears some resem-
blance with that of(1+ e)-spanners [GGN06]. Recall that
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Figure 2: Hierarchical sampling of an object. (a) Intervals
of ni and virtual nodes. The virtual node nb stores a distance
interval [0;1] (in max-norm metric) and is added as sum-
mation node of ni ; na stores[2;3] and is discarded; and nc
stores[1;2] and is re�ned. (b) In red, the summation nodes
of region Ri associated with ni .

region width is related to local mechanical stiffness, and our
interval-based region de�nition effectively implies a small
variance in the actual mechanical stiffness.

In order to construct shape-matching regions, we employ
the interval-based de�nition above and we follow a hierar-
chical algorithm. For each simulation nodeni , we represent
its shape-matching regionRi through a set ofsummation
nodes, which may contain both simulation and virtual nodes.
Note again that a virtual node will store summed values of
all its descendant leaves, hence using a virtual node as sum-
mation node prevents us from visiting all its leaves. A shape-
matching regionRi is constructed in the following way:

1. For every noden j of the octree, compute an interval
[a j ;b j ] that captures the minimum and maximum dis-
tances from all descendant leaves ofn j to ni .

2. Traverse the octree top-down, and for every noden j :
if a j > wi , discardn j and its subtree.
else ifb j < (1+ e)wi , insertn j in Ri .
else process the children ofn j .

3. Enforce region symmetry,ni 2 Rj () n j 2 Ri .

Figure2 shows an example situation with summation nodes
at two different levels. There exists a minimum valuee
such that the number of summation nodes in every region is
bounded by a desired constant. In practice, we usee= 0:5,
which yields on average 6 summation nodes per region in
the adaptively sampled model in Figure1.

Note that our de�nition of shape-matching regions is in-
dependent of the distance metric and the algorithm for com-
puting node distances. We describe the ef�cient computation
of distances in our implementation in Section6.

4.3. Hierarchical Fast Summation

GivenO(1) summation nodes per shape-matching region as
de�ned above, we can now de�ne our linear-costHierarchi-

cal Fast-Summationoperator

HF
i 2 Rr

�
vi

�
� å

i2 Rr

vi : (5)

It consists of two steps:

1. Depth summation: For all octrees, compute sums ofvi
in bottom-up fashion, such that virtual nodes contain the
sum of their children's values.

2. Breadth summation: For each region, sum up the readily
available values of all its summation nodes.

For an object withn simulation nodes, the depth-summation
is O(n) if we assume that the octrees are roughly balanced.
The breadth summation isO(n) as outlined above, hence the
HF operator has linear cost.

Similarly to theF operator in FLSM, our novel hierar-
chical fast-summation operatorHF is used for computing
the per-region transformationscr and Ar , as well as per-
node goal positionsgi (See Section3.1 for their de�nition).
The only difference w.r.t. FLSM is that we weight per-region
transformations by the massmr of their associated node, and
we then normalize the sum by the summed massMi , which
can be precomputed.

Our octree shape matching algorithm is now summarized:

1. Compute per-region translations

cr =
1

Mr
HF i2 Rr

f mixig: (6)

2. Compute per-region linear transformations

Ar = HF i2 Rr

n
mixix

0
i

To
� Mrcrc

0T

r : (7)

3. Extract rotationsRr using polar decomposition and com-
pose rigid transformationsTr .

4. Compute per-node goal positions

gi =
1

Mi
HF r2 Ri

f mrTrgx0
i : (8)

5. Apply the integration scheme from (2) and (3).

It now becomes apparent that our octree shape matching
shares the same algorithmic structure and linear-cost as
FLSM, with the notable difference that it supports adap-
tive sampling, and thereby the possibility to simulate much
thinner features at a lower total cost. Damping, described
in [RJ07], is also directly applicable with ourHF operator.

5. Dynamic Resampling

When topological changes are applied or when new LODs
are locally (de)activated, objects must be dynamically re-
sampled, and summation nodes of affected shape matching
regions must be recomputed. In this section, we describe a
general, robust, and ef�cient algorithm for dynamic resam-
pling under our octree-based setting. While describing the
algorithm, we assume the existence of a method for comput-
ing distances between pairs of nodes. Our particular method,
described in Section6, uses a visibility graph, and here we
will also refer to updates to the graph during resampling.
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Figure 3: A hanging liver model is interactively cut, while shape matching regions are ef�ciently recomputed, and self-collisions
are also interactively handled. The model starts with500nodes and ends with1550.

5.1. Topological Changes

Let us de�ne asNupdate the nodes for which shape match-
ing regions must be updated or computed from scratch (i.e.,
summation nodes must be identi�ed). A topological change
is detected when an edgee(ni ;n j ) of the visibility graph is
cut. In this case,Nupdatemust include the simulation nodes
ni andn j , plus all other simulation nodes whose regions in-
clude eitherni or n j .

5.2. Dynamic LOD Updates

To re�ne an existing simulation nodeni , its associated cell is
subdivided according to user-de�ned criteria, and nodes are
created for each new cell. All new leaf nodes become sim-
ulation nodes, whileni becomes virtual and its associated
region is removed. To coarsen (sibling) simulation nodes
f nig, they are removed from the tree, while their parent is set
as new simulation node. Both when re�ning or coarsening,
Nupdateconsists of the newly created simulation nodes and
those nodesn j whose regionRj includes a removed node.
The visibility graph must be updated by deleting the edges
incident on removed nodes, and setting visibility edges for
the newly added nodes (See Section6.1for more details).

5.3. Updating Shape Matching Regions

OnceNupdate is determined, either after dynamic LOD up-
dates or topological changes, we can recompute summation
nodes. For all nodesni 2 Nupdatewe do the following:

1. Recompute the distance to other simulation nodes. Note
that distances do not need to be computed for nodes fur-
ther than(1+ e)wi . Distance recomputation amounts to
more than 80% of the computation time when recomput-
ing summation nodes.

2. For virtual nodes, compute distance intervals in a bottom-
up manner.

3. Traverse the octrees in a top-down manner, determin-
ing summation nodes by checking the distance intervals.
Under topological changes, distances in the undeformed
con�guration cannot grow, hence it is suf�cient to start
the top-down traversal at the old summation nodes ofni .

4. Once summation nodes are determined, recompute the
constant quantitiesc0

r andMr .

6. Ef�cient Distance Computation

In this section we describe our algorithm for ef�ciently
computing distances between simulation nodes. We connect
nodes using a visibility graph and de�ne distances as short-
est paths along the graph, similar to [SOG06]. We �rst de-
scribe the initialization of the graph, and then a novel bucket-
based version of Moore's algorithm for shortest path compu-
tation [Moo59].

6.1. Graph Initialization

After sampling an object as described in Section4.1, we cre-
ate a visibility graph in a way similar to [SOG06]. Given a
simulation nodeni at an octree level where the distance be-
tween nodes isdi , we set edges to all other simulation nodes
closer than or equal todi . Then, we remove duplicate edges,
as well as edges that cross the surface at concave regions, in
order to account for material discontinuities. In our imple-
mentation, we use thè1 distance metric, i.e., max-norm.
Please refer to Figure1-d, where edges of the visibility graph
are visualized.

6.2. Bucket-Moore Algorithm

Once the visibility graph is initialized, it remains to com-
pute shortest distances along the graph, which are used for
de�ning summation nodes as described in Section4.2. We
have found maximum ef�ciency by adapting Moore's algo-
rithm [Moo59] for distance computations on a regular grid
where all edges have unit length, instead of using general-
purpose shortest path algorithms such as Dijkstra or Floyd-
Warshall [CLR90] or adapted versions [SOG06]. Moore's
original algorithm resembles breadth-�rst search (BFS) and
computes shortest distances from a noden0 to all other nodes
in the graph. It maintains two buckets,B0 storing the cur-
rent front of BFS, andB1 storing the next front. It visits the
nodes inB0 and places their unvisited neighbors inB1. Once
B0 is emptied,B1 is shifted toB0 and the integer distance
is incremented. A node's distance is set upon removal from
B0. Moore's algorithm can compute all pairwise distances
shorter thanDmax in time O(mn), wheren is the number
of nodes andm is the average number of nodes closer than
Dmax.
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Figure 4: Deformation of a hand with varying mechani-
cal stiffness (The pinky is soft, while the thumb is hard).
Our framework ef�ciently handles shape-matching regions
of varying width.

With the use of the max-norm distance metric, we can
quantize edge lengths with integer values, assigning a length
of one to an edge between two adjacent nodes at the max-
imum octree resolution. We similarly approximate the re-
gion widthswi and (1 + e)wi with integer values. In this
setting, we propose a bucket-based version of Moores's al-
gorithm that computes shortest paths when all edge lengths
are integers in a small range[1;dmax]. It also runs inO(mn),
although the constants are somewhat larger. The algorithm
maintainsdmax+ 1 buckets, and operates by visiting the
nodes on bucketB0. When a nodeni is removed fromB0, a
noden j adjacent toni at distanced may be added to bucket
Bd. Once bucketB0 is empty, buckets are shiftedBd  Bd+ 1.
Nodes that are visited store a temporary minimum distance,
which may be later reduced. Our proposedBucket-Moore Al-
gorithm for �nding shortest distances from a noden0 to all
other nodes closer thanDmaxmay be summarized as follows:

1. Initialization:
k = 0.
For all nodes, unmark and setdmin = 1 .
Putn0 in B0.

2. WhileB0 is not empty
Remove the �rst nodeni from B0.
If ni is marked, discard it.
Else: markni ; for each neighborn j of ni :

Computed = k+ d(ni ;n j ).
If (d � n j :dmin or d � Dmax), discardn j .
Else:n j :dmin  d; addn j to Bd(ni ;n j ) .

3. k  k+ 1; shift bucketsBd  Bd+ 1; Bdmax = fg .
4. If k < Dmax and some bucket is non-empty, repeat 2.

7. Implementation and Results

All our experiments were carried out on a 3:4 GHz Pentium-
4 PC with 1 GB of memory. Next we describe several of the
effects that can be achieved with our approach, we discuss
implementation details for several features, and compare
performance and features with the FLSM algorithm [RJ07].

Surface animation: We animate the surface by interpo-
lating the deformation �elds de�ned by nearby simulation

Figure 5: Block undergoing collisions and plastic deforma-
tions, ef�ciently incorporated to our hierarchical fast sum-
mation.

nodes, similar to [MKN � 04]. We have implemented the sur-
face animation on the CPU, but it would be possible to do
it directly on the GPU as described by [RJ07]. In order to
ef�ciently detect nearby nodes after topological changes,we
augment the visibility graph as described in [SOG06].

Comparison with FLSM - Performance, adaptivity,
and inhomogeneity:Figure1 shows an example where we
compare FLSM and our octree shape matching. Using a reg-
ular lattice, 35000 nodes are needed for correctly capturing
the �ngers. FLSM runs then at an average 2:5 fps, while our
approach (with regular sampling, no octree) runs at 4:6 fps.
Fast summation / shape matching, polar decompositions, and
damping each consume roughly one third of overall compu-
tation time in our approach, and the other simulation exam-
ples have a similar distribution. In both FLSM and our ap-
proach, we have measured timings without low-level code
optimizations, while the timings reported in [RJ07] include
such optimizations (as reported by the authors in personal
communication), and with these FLSM would run at about
10 fps.

But the power of our approach lies in its ability to accomo-
date adaptive sampling. Figure1 also shows the same model
with adaptive sampling. The resolution on the surface is as
high as before when needed, but the resolution in the interior
is much coarser. The model consists of 661 nodes, and runs
at 222 fps with our method, almost two orders of magnitude
faster than required by FLSM for resolving surface features.
Note that in this example adaptive sampling is done once as a
preprocess, and our algorithms for dynamic resampling and
ef�cient distance computation are not required. One could
use any other method for computing distances and determin-
ing summation nodes.

Figure 4 shows a hand model with different stiffness at
each �nger (Please watch the accompanying video). Such
material inhomogeneity is achieved by varying the width
w of shape matching regions. Our octree shape matching
framework naturally allows this feature, which would how-
ever break the regularity required by FLSM.

Plasticity: Figure5 shows plastic behavior of a deforming
block under collisions. We achieve this behavior by adapting
the plasticity model of [MHTG05] to our setting. In their
model, each cluster stored a plasticity transformation matrix
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Figure 6: Complex scene with40 deforming �owers. We employ a coarse sampling when the �owers are moved by the wind,
for a total of 5680nodes in the scene. But we dynamically re�ne the models when touched by the user, as shown in the left
image. Our (dynamic) adaptive sampling framework allows interactivity (20 fps) at the feature level in this complex scene.

Sr , which can be adopted in our model by modifying the
computation of the per-region transformationsAr andAqq
(See Sections3.1and4.3for more details):

Ar =
�

HF i2 Rr

n
mixix

0
i

To
� Mrcrc

0T

r

�
ST

r ; (9)

Aqq =
h
Sr

�
HF i2 Rr f mix

0
i x0

i
T

g
�

ST
r � Sr

�
Mrc

0
r c0

r
T �

ST
r

i � 1
:(10)

Note thatAqq must be recomputed whenSr or the region
itself changes. Finally,Sr is included in the region transform
such thatTr = [ RrSr (cr � RrSrc0

r )].

Topology changes:Figure3 shows a liver model being
cut interactively. The model starts with 500 nodes and ends
with 1550. During cutting, we update the visibility graph, re-
sample simulation nodes, and recompute summation nodes,
as described in Section5. Cutting also involves synthesizing
new surfaces, and we follow the approach of [SOG06] for
this purpose. The simulation, including collision handling,
takes between 3:7 and 15:5 ms per frame. Resampling takes
between 62 and 124ms.

(Self-)collision handling:The same Figure3 also depicts
interactive handling of self-collisions between cut surfaces.
We reuse the shortest-path information (see Section6) for
processing collisions and self-collisions very ef�ciently. We
approximate a distance �eld inside an object through a sim-
ple �ooding algorithm that is seeded at the simulation nodes
near the object's surface. We transform octree leaf cells with
the transformations of corresponding simulation nodes, and
we then test them for intersection with other nodes using
the spatial hashing algorithm of [THM� 03]. The penetration
depth is given by the approximate distance �eld and is used
for computing repulsive forces.

Dynamic LOD selection: Figure 6 shows a complex
scene with 40 deformable �owers moving in the wind. When
viewed from far away, each �ower is discretized with 142
simulation nodes, and the total simulation runs at 20 fps.

When the user interacts with a �ower, we dynamically re-
�ne the sampling to capture the complexity of surface fea-
tures and allow them to move independently. With the FLSM
approach, the resolution required to resolve the thin petals
would produce an explosion of the number of nodes. With
our octree shape matching algorithm and dynamic LOD se-
lection, however, the total number of nodes increases only
by 6%, allowing full interactivity. Dynamic LOD updates
are ef�ciently executed, and 3 simultaneous levels of re�ne-
ment near the petals (352 new nodes) took only 121 ms.
These timings do not include surface animation and render-
ing, which took 4 ms per �ower.

8. Limitations and Future Work

We have presented a novel shape matching deformation al-
gorithm that allows (dynamic) adaptive sampling. It enjoys
the robustness and ef�ciency of other shape matching de-
formation models, but it also enables features like interac-
tive topological changes or dynamic LOD selection. It is ap-
plicable in settings that favor plausibility, robustness,and ef-
�ciency, such as video games or surgical simulation.

Our method also presents some limitations. One of them,
common to other geometric deformation methods, is the
lack of physical �delity and the dif�culty to tune mechani-
cal behavior based on measurable parameters. However, our
method ef�ciently supports local control of mechanical stiff-
ness, unlike previous shape matching methods.

Topological changes are much more ef�cient with our
method than with previous shape matching approaches, but
there is a practical bound on the number of regions that can
be updated in an interactive manner. The same is true for dy-
namic LOD selection, and very drastic LOD changes could
stall the method. These are, however, known limitations for
all techniques that support dynamic adaptivity.

Our shape matching deformation model relies on the exis-
tence of a volumetric sampling, and cannot be directly used
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for simulating shells or rods. It would be interesting to de�ne
shape matching deformation models for such objects.
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